본문 바로가기
반응형

Polpid's World568

맥(Mac)에서 아나콘다(Anaconda) 제거하기 1. 아나콘다 설치 경로 확인하기 ➜ ~ conda info active environment : None shell level : 0 user config file : /Users/sanghyunkim/.condarc populated config files : conda version : 23.3.1 conda-build version : 3.23.3 python version : 3.10.10.final.0 virtual packages : __archspec=1=x86_64 __osx=10.16=0 __unix=0=0 base environment : /usr/local/anaconda3 (writable) conda av data dir : /usr/local/anaconda3/etc/conda.. 2023. 8. 11.
MLOps 실전 가이드 리뷰 이 책은 실전 입문이라는 책 답게 ML 모델의 개발부터 배포, 운영까지의 전 과정을 다루고 있다. 머신 러닝 모델의 생애 주기를 다루면서 ML Ops의 필요성과 중요성을 알수 있다. 책은 총 12개의 장으로 구성되어 있고 각 장마다 다른 주제를 다루고 있다. 첫 장과 두번째 장에서는 ML Ops 의 기본 개념과 장점을 소개하고 있으며 세번째 장부터는 실전적인 내용들을 차례대로 접근한다. 데이터 수집, 모델 훈련, 평가, 배포, 모니터링, 유지지보수, 그리고 AWS, Azure, GCP 환경에서 활용하는 방법 등을 설명해준다. 최근 몇년 동안 머신 러닝 모델의 훈련과 개발은 크게 발전했지만 이를 공부하고 운영환경에 적용하는데에는 여전히 어렵다는게 현실이다. 그리고 개개인이 스스로 공부를 하면서 구축을 해보.. 2023. 7. 23.
행동 데이터 분석 리뷰 내가 이 책을 선택 한 이유는 최근에 머신 러닝 관련 해서 관심을 갖고 있었고 데이터 분석에 대한 내용이 궁금 했기 때문이었다. 머신러닝에 관심은 있지만 아직은 공부하는데 어려움을 겪고 있었기에 최근에 관련 책들을 읽어보고 있으나 이마저도 이해하는데는 쉽지 않은것 같다. 이 책은 데이터를 어떻게 분석을 하는지에 대한 내용을 담고있다. 우리가 매일매일 무수히 많은 도구를 통해서 얻을 수 있는 데이터들을 어떻게 연관짓고, 어떻게 의미있는 결과로 도출 하는지에 대한 내용들이다. 거기에다 그것을 이용한 사용자의 행동들을 어떻게 유추할 수 있는지 알려준다. 이 책을 읽으면서 내가 느꼈던 부분들은 다음과 같다 - 이 책은 수식이 들어가지 않는 설명 부분은 이해하는데 큰 어려움이 없었다. - 수식은 내게는 어려웠다... 2023. 6. 20.
머신러닝 관련 용어 지도학습 회귀(Regression) : 정답이 연속형 변수 분류(Classification) : 정답이 비연속형(범주형) 변수 비지도 학습 군집분석(Clustering) : 주어진 데이터가 어떻게 구성되어있는지. 강화학습(Reinforcement Learning) : 행동에 따른 보상을 최대화 시키는 방법 선형회귀(Linear Regression) 예측값을 직선으로 표현하는 모델 실제 값을 잘 예측하는것을 목표로 한다. Classification 과 Clustering 의 차이 Classification 은 새로운 데이터를 알고있는 레이블에 포함시키는것. 정해진 그룹의 데이터를 파악하여 특징을 찾아 새로운 데이터를 정해진 그룹에 포함시키는것. Clustering 은 데이터의 패턴을 찾아 그룹을 만들어 내.. 2023. 6. 12.
colab 에서 kaggle 설정 설치 !sudo pip install kaggle Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting kaggle Downloading kaggle-1.5.13.tar.gz (63 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 63.3/63.3 kB 4.4 MB/s eta 0:00:00 Successfully built kaggle Installing collected packages: kaggle Successfully installed kaggle-1.5.13 kaggle api 받기 kaggle 로그인 > profile >.. 2023. 6. 7.
Pandas 사용 시리즈(Series) 데이터가 순차적으로 나열된 1차원 배열 형태 딕셔터리로 Series 생성시 -> key 는 시리즈의 인덱스와 대응된다. 리스트로 Series 생성시 -> 리스트의 인덱스가 시리즈의 인덱스로 대응된다. dict_data = {'a':1,'b':2,'c':3} series_data=pd.Series(dict_data) a 1 b 2 c 3 list_data = ['2022-10-11',3.14,'ABC',100,True] series_data1=pd.Series(list_data) 0 2022-10-11 1 3.14 2 ABC 3 100 4 True 데이터프레임(DataFrame) 행과 열로 만들어지는 2차원 배열 형태 열은 각각의 시리즈 객체이다. key 값이 열 이름이 된다. dic.. 2023. 5. 23.
AWS 기반 데이터 과학 리뷰 AWS 를 이용해서 어떻게 파이프 라인을 구축하고 사용하는지 공부해보려고 이 책을 읽기 시작했다. 그런데 이책.. 생각보다 읽기가 쉽지 않다. 처음에는 챕터 1에서 AWS 기반 데이터 과학에 대한 소개가 이루어지고, 챕터 2에서는 AWS를 활용한 모범사례가 소개되어있다. 그러나 이 부분에서는 다양한 기술과 내용들이 많이 다뤄져서 진도를 나가기가 어려웠다. 특히, AWS에 대한 기반 지식이 부족한 나에게는 쉽게 이해되지가 않았다. 그래서 생각해 보니 챕터 3부터 시작해서 주요 기술이 자세히 설명되어 있는 부분부터 읽는 것도 좋을것 같았다. 책을 읽으면서 중요한 기술들을 학습하고, 해당 내용을 실습하며 익히다 보면 보다 쉽게 파이프 라인 구축에 도움이 될것이다. 이 책을 읽으면서 가장 큰 단점은 이미지나 캡.. 2023. 5. 21.
NumPy 사용 NumPy 배열 차원(Dimension)을 축(axis)이라고 표현한다. 배열 속성값 shape : 배열의 각 축(axis)의 크기 ndim : 축의 개수(Dimension) dtype : 각 요소(Element)의 타입 itemsize : 각 요소(Element)의 타입의 bytes 크기 size : 전체 요소(Element)의 개수 배열 생성 np.array 이용 : 튜플이나 List 입력 print(np.array([2,3,4])) [2 3 4] np.zeros(shape) : 0 으로 구성된 N 차원 배열 생성 print(np.zeros((3,4))) [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] np.ones(shape) : 1로 구성된 N차원 배열 생성 prin.. 2023. 5. 9.
머신러닝 시스템 설계 리뷰 머신 러닝에 대한 내가 갖고 있던 생각은 일단 "어렵다" 이다. 분명 트랜드이고 많은 부분에서 연구하고 공부하는 사람들도 많은데 이상하게 공부하기가 쉽지 않았다. 그렇게 느꼈던 것은 아마도 무엇부터 공부해야 할지 몰랐던것 같다. 그리고 프로그래밍 언어를 주로 공부를 했던 습관때문인지는 몰라도 언어의 기법, 또는 기능을 공부하는것 이외에 이론을 먼저 공부하는게 쉽지 않았다. 머신러닝, 딥러닝 등등의 내용을 이해하기 위해서는 우선 이게 무엇인지 부터 알아야 하고 각각 사용하는 용어에 대해서도 익숙해질 필요가 있다. 이책은 머신 러닝 시스템 설계를 하기 위해서 필요한 것들이 무엇인지 단계별로 설명해 주고 있다. 머신러닝이 무엇인지, 기초 적인 배경지식들은 무엇이 필요한지 설명을 해준다. 그리고 데이터를 수집하.. 2023. 4. 22.
Conda python 버전 업데이트 현재 conda 를 사용한 python 가상 환경의 버전은 3.8.2 로 되어있다. 이것을 변경하기 위해서는 다음과 같은 절차를 거친다. 1. 설치 가능한 python 버전 확인 conda search python 위 명령어를 사용하면 설치 가능한 python 버전을 확인 할 수 있다. 2. python 설치 conda install python=버전 3. 가상환경 재접속 가상환경을 deactivate 하고 다시 activate 하면 파이썬 버전이 변경되어있다. 2023. 4. 15.
[VS Code] 트리 펼쳐서 보기 옵션 VS Code 사용하다 보면 Explore 창에 디렉토리가 플렛하게 나오는 것이 불편할 때가 있다. 이렇게 test 디렉토리 하위에 test1 이라는 디렉토리가 1개 만 있을 경우 옆으로 표시된다. 이때에 test 디렉토리에 무언가 생성하려고 하면 test1 디렉토리에 생성이 된다. Compact Folders 기능 Settings 에 들어가보면 Compact Folders 라는 설정이 있다. 기본 설정으로는 체크가 되어있다. 저 체크를 해제 하게 되면 디렉토리가 다음과 같이 나온다. 2023. 4. 14.
Mac 에서 Conda 설치 Mac 에서 Conda 는 간단히 설치가 가능 하다. . brew install conda .... ## 설치 완료시 anaconda was successfully installed! ➜ ~ conda -V zsh: command not found: conda 설치 완료 후에 실행을 해보면 저렇게 not found 가 나올수 있다. 현재 사용중인 터미널에 path 가 입력이 안되어서 저런 현상이 발생한다. ➜ ~ /usr/local/anaconda3/bin/conda init zsh no change /usr/local/anaconda3/condabin/conda no change /usr/local/anaconda3/bin/conda no change /usr/local/anaconda3/bin/con.. 2023. 4. 5.
728x90
반응형